Uma vez que os valores amostrados representam amostras e não populações, utilizaremos para variação do grau de confiança das incertezas de medição a função de distribuição de t-student. Para obtenção dos valores no R sugere-se a seguinte função: \(t=qt(1-(1-\%)/2, \nu_{eff})\), para uso no R.
\(v\) | 68,27%* | 90% | 95% | 95,45%* | 99% | 99,73%* |
---|---|---|---|---|---|---|
1 | 1,84 | 6,31 | 12,71 | 13,97 | 63,66 | 235,78 |
2 | 1,32 | 2,92 | 4,30 | 4,53 | 9,92 | 19,21 |
3 | 1,20 | 2,35 | 3,18 | 3,31 | 5,84 | 9,22 |
4 | 1,14 | 2,13 | 2,78 | 2,87 | 4,60 | 6,62 |
5 | 1,11 | 2,02 | 2,57 | 2,65 | 4,03 | 5,51 |
6 | 1,09 | 1,94 | 2,45 | 2,52 | 3,71 | 4,90 |
7 | 1,08 | 1,89 | 2,36 | 2,43 | 3,50 | 4,53 |
8 | 1,07 | 1,86 | 2,31 | 2,37 | 3,36 | 4,28 |
9 | 1,06 | 1,83 | 2,26 | 2,32 | 3,25 | 4,09 |
10 | 1,05 | 1,81 | 2,23 | 2,28 | 3,17 | 3,96 |
11 | 1,05 | 1,80 | 2,20 | 2,25 | 3,11 | 3,85 |
12 | 1,04 | 1,78 | 2,18 | 2,23 | 3,05 | 3,76 |
13 | 1,04 | 1,77 | 2,16 | 2,21 | 3,01 | 3,69 |
14 | 1,04 | 1,76 | 2,14 | 2,20 | 2,98 | 3,64 |
15 | 1,03 | 1,75 | 2,13 | 2,18 | 2,95 | 3,59 |
16 | 1,03 | 1,75 | 2,12 | 2,17 | 2,92 | 3,54 |
17 | 1,03 | 1,74 | 2,11 | 2,16 | 2,90 | 3,51 |
18 | 1,03 | 1,73 | 2,10 | 2,15 | 2,88 | 3,48 |
19 | 1,03 | 1,73 | 2,09 | 2,14 | 2,86 | 3,45 |
20 | 1,03 | 1,72 | 2,09 | 2,13 | 2,85 | 3,42 |
25 | 1,02 | 1,71 | 2,06 | 2,11 | 2,79 | 3,33 |
30 | 1,02 | 1,70 | 2,04 | 2,09 | 2,75 | 3,27 |
35 | 1,01 | 1,69 | 2,03 | 2,07 | 2,72 | 3,23 |
40 | 1,01 | 1,68 | 2,02 | 2,06 | 2,70 | 3,20 |
45 | 1,01 | 1,68 | 2,01 | 2,06 | 2,69 | 3,18 |
50 | 1,01 | 1,68 | 2,01 | 2,05 | 2,68 | 3,16 |
100 | 1,005 | 1,660 | 1,984 | 2,025 | 2,626 | 3,077 |
\(\infty\) | 1,000 | 1,645 | 1,960 | 2,000 | 2,576 | 3,000 |
Copyright © 2020 Guilherme Kunz, Inc. All rights reserved.